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Abstract

Differential quadrature (DQ) is a numerical technique which can produce highly accurate results by using
a considerably small number of grid points. When it is applied to dynamic equations, however, DQ may
exhibit dynamic numerical instability. The present paper analyzed the sources of dynamic numerical
instability through a simple example, and the main finding is that dynamic stability is dominated by the grid
points near and on boundaries. Based on this, we propose a variable order approach which is characterized
by applying different DQ schemes to the grid points near boundaries and grid points far away from
boundaries. Numerical examples of both linear and non-linear dynamic equations show that the variable
order approach presented in this paper may greatly improve dynamic stability, producing convincing
results.
r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Differential quadrature (DQ) was introduced by Bellman et al. [1] as a simple and highly
efficient numerical technique in the 1970s. Its central idea is to approximate the derivatives at a
point using a linear sum of function values at a set of selected grid points. As shown by Shu [2]
DQ is a global method, equivalent to higher order finite-difference scheme. Compared with local
numerical methods such as finite element method or low-order finite difference schemes, DQ can
yield very accurate numerical results by using a considerably small number of grid points.

Since its introduction, DQ method has been applied by many authors to a variety of
engineering problems [2–11]. Majority of these applications are relevant to statics or free
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vibrations. Recent years saw more dynamic applications [12–13]. In the dynamic cases, however,
dynamic numerical instability might become a serious problem. As time marches, accumulations
of numerical errors might spoil the solution. Numerical stability is an important factor when
dynamic applications are concerned.

First in this paper, a simple numerical example is given to show dynamic numerical instability
associated with DQ discretization. The dynamic numerical instability is then analyzed through an
example. It was found that the grid points near and on boundaries have dominant influence on
dynamic numerical instability. This conclusion is in fact in agreement with previous studies
[3,7,8,10,14]. These studies show that there exists an optimum distribution of grid points and that
more dense grid points near boundaries and lesser dense grid points in the central part of the
solution domain are likely to produce better results. Based on this observation, we propose to
distinguish two main classes of nodes (grid points), core nodes and cortical nodes according to
their distance from boundaries. We apply variable order DQ approximations to core and cortical
nodes. At core nodes, we apply higher order DQ schemes while at cortical nodes we apply lower
order DQ schemes. This variable order approach turns out to be very effective in keeping dynamic
stability and accuracy. Numerical examples show that the approach presented in this paper is
applicable to linear and highly non-linear dynamic equations.

2. DQ discretization and dynamic numerical instability

Consider a continuous function f ðx; tÞ defined in terms of time t and space x. Suppose on the
following N discrete spatial grid points (or nodes)

x1ox2o?oxN ; ð1Þ

are defined the values of the function f ðx; tÞ

f ðx1; tÞ; f ðx2; tÞ; :::; f ðxN ; tÞ: ð2Þ

It is our purpose to find the various order derivatives of f with respect to x at ith node xi using
discrete function values at above N grid points. DQ is characterized by approximating the
derivatives of a function using a weighted sum of functions values on the grid points. The
weighting coefficients are dependent on the spatial grid spacing only. Then the DQ discretization
of the rth order partial derivative with respect to x is given by the following simple equation:

@rf ðxi; tÞ
@xr

¼
XN

j¼1

ar
ijf ðxj; tÞ; i ¼ 1; 2; :::;N; r ¼ 1; 2; :::;N � 1; ð3Þ

where ar
ij is the weighting coefficient for the rth order derivative with respect to x. The derivatives

are dependent on the function values on grid points and on spatial grid spacing.
Based on Quan and Chang [7], the explicit formulas for the first order weighting coefficients

are

a1
ij ¼

1

xi � xj

LðxiÞ
LðxjÞ

; i; j ¼ 1;y;N; iaj; ð4aÞ
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a1
ii ¼ �

XN

j¼1ja1

a1
ij; i ¼ 1;y;N: ð4bÞ

In Eq. (4a), the polynomial LðxÞ is given by

LðxiÞ ¼
YN

k¼1;kai

ðxi � xkÞ; i ¼ 1; :::;N: ð4cÞ

The weighting coefficients for the second and higher order derivatives are given by the following
recursive equations:

ar
ij ¼ r ar�1

ij a1
ij �

ar�1
ij

xi � xj

" #
; i; j ¼ 1;y;N; iaj; r ¼ 2;y;N � 1; ð5aÞ

ar
ii ¼ �

XN

j¼1;ja1

ar
ij ; i ¼ 1;y;N: ð5bÞ

These formulas are easy to be coded and can yield high accurate results. It was shown by Quan
and Chang [7] that DQ is equivalent to Lagrange polynomial interpolation. If N grid points
are used, the interpolating polynomial is a ðN � 1Þth order one. Using this idea, Shu et al. [14]
obtained the approximation errors for the first order derivative R1 and the second order derivative
R2:

R1ðxiÞ ¼
f ðNÞðxÞW ð1ÞðxiÞ

N!
; i ¼ 1;y;N; ð6aÞ

R2ðxiÞ ¼
f ðNÞðxÞW ð2ÞðxiÞ

N!
; i ¼ 1;y;N; ð6bÞ

where W ðxÞ ¼
QN

j¼1ðx � xjÞ and the numbers in the superscript brackets denote the order of
derivatives . These residual estimates show that very high accuracy can be obtained even if the
number of grid points N is not too large. Accuracy is proportional to N or its powers. By ‘its
powers’ we mean here that accuracy may also be proportional to squared or cubic N or even
higher order terms of N.

For a dynamic equation, we also need to discretize time. There have been attempts to apply DQ
approach for temporal discretization, but in this paper we employ simpler temporal discretization
method, fourth order Runge–Kutter (RK) scheme. Because RK method is introduced in many
books, we will not explore any details of the method in the following.

To see dynamic numerical instability we first consider the following string vibration
equation:

@2uðx; tÞ
@t2

¼
@2uðx; tÞ
@x2

; 0pxp1 ð7aÞ
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subject to the following initial and boundary conditions:

uðx; t ¼ 0Þ ¼ sinðpxÞ; uðx ¼ 0; tÞ ¼ uðx ¼ 1; tÞ ¼ 0: ð7bÞ

The solution to the above equations is known to be

uðx; tÞ ¼ sinðpxÞcosðptÞ: ð8Þ

To apply RK method, we rewrite Eq. (7) into the following form of a set of first order ordinary
differential equations:

dui

dt
¼ vi;

dvi

dt
¼

d2ui

dt2
¼

PN
j¼1 a2

ijui;

8>><
>>: i ¼ 1;y;N: ð9Þ

In the above equations, DQ approximation was applied for the second order derivative with
respect to x, see Eq. (3). Note that a2

ij in the above equation is the coefficient for the second
derivative, but not squared aij : Eq. (9) enables us to use RK easily. For this problem we used
N ¼ 30 for spatial disretization. The time step used is Dt ¼ 10�4: The numerical results obtained
from Eq. (9) at three time steps (t ¼ 0; 50 and 100ms) are shown in Fig. 1. The solid line denotes
the displacement at t ¼ 50ms, and dotted line denote the displacement at t ¼ 50ms. From the
figure, the solution becomes unstable very fast. At t ¼ 50ms, the solution exhibits divergence at
both ends. The instability spreads with time to the central part of the solution domain (x ¼ 0) so
fast that the solution at time step t ¼ 100ms is completely meaningless. This is a very simple
dynamic equation, but it strongly indicates that dynamic numerical instability may easily spoil the
solution if DQ discretization of spatial variable is not carefully treated.

Both spatial and temporal discretizations might contribute to the instability. We argue that the
instability does not arise from RK discretization because the Courant–Friedriches–Levy (CFL)
stability condition for time step is satisfied. The CFL condition on the time step Dt is a necessary
condition for the convergence of an explicit numerical evolution algorithm [15]. Suppose c is the
wave velocity and Dx is grid spacing. From Eq. (7a), the wave velocity c ¼ 1 and the grid spacing
Dx ¼ 1=N ¼ 1=30E3:3 � 10�2: Then the CFL condition

Dt ¼ 10�4{3:3� 10�2 ¼
Dx

c
ð10Þ
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is satisfied in this example. The instability is thus solely from DQ discretization. In the following
section, a simple example is given to demonstrate how numerical instability is produced.

3. Boundary effect and a variable order approach

To simplify the analysis, we will focus on DQ discretization only. Consider a cosine function
defined on [0,2p]

f ðxÞ ¼ cosð2xÞ; 0pxp2p: ð11aÞ

The second order derivative is

d2f ðxÞ
dx2

¼ �4cosð2xÞ; 0pxp2p: ð11bÞ

Now we use DQ to find the second order derivative of the function in Eq. (11a). Suppose f ðxÞ
is approximated by its values fiðI ¼ 1;y;NÞ on N equidistant grid points 0 ¼ x1o?oxN ¼ 2p:
The squared difference between the numerical value and analytical result at ith node is given by

S2
i ¼

Xn

j¼1

a2
ijf ðxjÞ þ 4cosð2xjÞ

" #2

: ð12aÞ

The results obtained from Eq. (12a) are shown in Fig. 2(a) for N ¼ 20; 30, 40, 50 and 60. The
curves in the figure indicate that the errors are not uniformly distributed in the solution domain.
The curves feature low accuracy near the two ends and high accuracy in the central part of the
solution domain. This is not surprising at all. What is surprising is the big difference of the errors
on the points near boundaries and far away from boundaries. This also agrees with our previous
example (Eq. (9)) in that instability originates from the two ends and spreads fast to the rest part
of the solution domain. Therefore, nodes near boundaries play the dominant role for stability.

To enhance the above observations, consider the following three error measures:

S2
T ¼

1

N

XN

i¼1

XN

j¼1

a2
ijf ðxjÞ þ 4cosð2xjÞ

" #2

; ð12bÞ

S2
C ¼

XN

j¼1

a2
n=2f ðxjÞ þ 4cosð2xn=2Þ

" #2

; ð12cÞ

S2
E ¼

XN

j¼1

a2
1jf ðxjÞ þ 4

" #2

; ð12dÞ

where S2
T is the average squared error, S2

C is squared error at the centre point of x co-ordinate and
S2

E is squared error at point x1 (left end point). S2
E and S2

C are components of S2
T : For different

N’s, the error curves are shown in Fig. 2 (b). In the figure, the horizontal axis is grid number N,
and the vertical axis is error measures in logarithmic scale. The three errors are denoted by dotted
line for S2

T ; solid lines for S2
E and dashed line for S2

C ; respectively. For smaller Ns, S2
T is large, but
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is a decreasing function of N. Around N ¼ 30; S2
T attains minimum, and then it becomes an

increasing function of the grid number N. Above N ¼ 56; S2
T is so large that the numerical values

of the derivatives are divergent. It is interesting to note that the error at the left end point S2
E is

almost coincident with S2
T : Contrary to S2

T and S2
E ; the error at the centre point S2

C is a decreasing
function of grid number N, but above N ¼ 30; S2

C is almost a constant. From the figure, we
conclude that the contribution from S2

C to S2
T is negligibly small. The main contribution to the

total error S2
T comes from the errors at the end points (S2

E).
In summary, we conclude from the above simple example that

1. the accuracy near boundaries dominates the total accuracy;
2. the accuracy near boundaries might become very poor if grid number N is large;
3. very good accuracy can be achieved at nodes far away from boundaries. The accuracy is not

dependent on grid number N if N is large enough.

It should be noted that the above conclusions are obtained based on the example given in
Eqs. (11a) and (11b). A theoretical analysis for general cases is beyond the scope of the present
paper. But these conclusions are in agreement with previous studies [3,7,8,10,14]. These studies
showed that a non-uniform grid distribution might produce better results when DQ discretization
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is applied. A frequently used grid distribution is

xi ¼
1

2
1 � cos

i � 1

N � 1
p

� �
 �a
D; i ¼ 1;y;N; ð13Þ

where D is the interval length, and a is a positive constant near 1. Note that the above grid
distribution is characterized by putting more nodes near boundaries and less nodes near the centre
of the solution domain. For nodes near boundaries the accuracy is low, and thus dense nodes are
used. Far away from boundaries, the DQ is of high accuracy and thus lesser nodes are used.

Based on the fact that boundary nodes dominate accuracy and that large grid number may lead
to numerical instability, we propose to distinguish two classes of nodes, core and cortical nodes.
Cortex (cortical) is an anatomical word, meaning outer shell or covering. Here we used the word
to represent the nodes near and on boundaries. At a cortical node, the grid number used to
approximate the derivatives at that point cannot be too large. Suppose only a small number of
nodes, say MooN; are used to approximate the derivatives at a cortical node as shown in Fig. 3.
At a core node, however, we still use N nodes because the accuracy at a core node can be well kept
even if grid number is large. In Fig. 3, another parameter Mp is defined. It denotes transition from
a core node to a cortical. Generally, we have

MpooMooN: ð14Þ

We use B to denote the set of cortical nodes and C to denote the set of core nodes. Then the
derivatives are approximated by

@rf ðxi; tÞ
@xr

¼
XM

j¼1

ar
ijf ðxj; tÞ; xiAB; ð15aÞ

@rf ðxi; tÞ
@xr

¼
XN

j¼1

ar
ijf ðxj; tÞ; xiAC: ð15bÞ

Or in one-dimensional case, the set B and C are

B ¼ fx1;y; xM�Mpg,fxN�MþMPþ1;y;xNg; ð16aÞ

C ¼ fxM�MþMPþ1
;y;xN�MþMP

g: ð16bÞ
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Similar formula may be easily established for two-dimensional cases. Because DQ is equivalent
to differentiation using Lagrange polynomial [2], the above equations indicate that Lagrange
polynomials of different orders are separately employed to find derivatives at a core node and a
cortical node. Eq. (15) is a variable order approach.

The proposed method is simple, but it does yield encouraging results. To see this, we return to
the example given by Eq. (11a), the simple cosine function. Suppose N ¼ 55; M ¼ 10 and Mp ¼ 1:
The results obtained from ordinary DQ approximation and from the present scheme are shown in
Fig. 4 (a) using dotted and solid lines, respectively. The analytical results are shown by dots. At
both ends, the numerical results obtained from ordinary DQ are divergent while those obtained
from the present method are stable at both ends. We now set N ¼ 70 for which case the ordinary
DQ gives very bad results as shown in Fig. 2. Using present variable order DQ, we obtained the
second order derivatives at each node as shown in Fig. 4(b) denoted by solid lines. The results are
both stable and in very good agreement with the analytical results.

For different node number N, the error defined by Eq. (12b) is shown in Fig. 5. The dotted line
shows the error obtained from DQ approximation, and the solid and dashed lines show the results
obtained from present method. We do see from the figure that the accuracy has been greatly
improved over a wide range. The error is a decreasing function of the node number N and
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accuracy does increase with N. Eq. (15) is only a small change to ordinary DQ, but the obtained
results have been improved greatly.

Fig. 6 sows the influence of M on the stability. In the figure, the results for three Ms (M ¼ 3; 4
and 6) are shown. If M is too small, instability is likely to happen. Although there is a lack of
theoretical value, we may obtain a rough estimate for M from Figs. 5 and 6. We suggest M ¼
6215: Then the rough estimate for Mp based on Eq. (14) is Mp ¼ 025:

4. Numerical examples

In this section, we present some numerical examples to show the capability of the above
method.

4.1. String vibration

The problem is as same as the example given by Eq. (7). We used the following parameters for
the computation: total node number N ¼ 30 and the node number for cortical node M ¼ 7: The
parameter Mp ¼ 1: Time step is Dt ¼ 10�4: Both simulation results (solid lines) and analytical
solutions (dots) are shown in Fig. 7(a). They are in very good agreement. Recalling the example of
Eq. (7), the results obtained from present method are very satisfactory.

For the sake of comparison, the general DQ with non-uniformly spaced grid points was also
applied to this problem. The non-uniform grid distribution is given in Eq. (13) and the results are
shown in Fig. 7(b). As expected, general DQ results are also in very good agreement with the
analytical solution.

4.2. Scalar combustion model

The next example is a reaction–diffusion equation. This is a highly non-linear dynamic
equation, in which a shock is formed. It is often employed to test suitability of a new algorithm.
The equation is described in Ref. [16] as a model of a single step reaction with diffusion. The
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equation reads

quðx; tÞ
qt

¼
q2uðx; tÞ
qx2

þ D½1 þ a � uðx; tÞexpð�d=uÞ; �1pxp1; t > 0 ð17aÞ

subject to the following boundary and initial conditions:

uð�1; tÞ ¼ uð1; tÞ ¼ 1; t > 0; ð17bÞ
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Fig. 6. Dependence of the accuracy on the size M of cortical node set.
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uðx; 0Þ ¼ 1; �1pxp1; ð17cÞ

where D=Red/(ad) and R, d, a are constants. The solution represents the temperature uðx; tÞ of a
reactant in a chemical system. For small times, the temperature gradually increases from unity
with a ‘hot spot’ forming at x ¼ 0: At a finite time ignition occurs, causing the temperature at
x ¼ 0 to jump to 1 þ a: A sharp flame front then forms and propagates towards x ¼ �1 and 1
with a speed proportional to exp½ad=2ð1 þ aÞ
: In real problems, a is around unity and d is large;
thus the flame front moves exponentially fast after ignition. The problem reaches a steady state
once the flame propagates to x ¼ �1 and 1:

We solved Eq. (17) for a ¼ 1:5; d ¼ 15 and R ¼ 5 using the present variable order approach.
Computed temperatures u versus x are shown in Fig. 8 for several time steps and N ¼ 30; M ¼ 9
and Mp ¼ 2: The results obtained from higher order (fourth order) finite difference method [18]
are also shown in the figure denoted by circles. Both are in good agreement. This is a very difficult
problem due to exponential non-linearity [16]. Our method is capable of finding the solution with
relative ease.

We also tried using general DQ with non-uniformly spaced grid points (the grid distribution is
given in Eq. (13)) to solve Eq. (16). The results are shown in Fig. 9. In Fig. 9(a) n ¼ 24 nodes were
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used and in Fig. 9(b) n ¼ 25 nodes were used. Insufficient accuracy is observable from Fig. 9(a),
particularly at the centre (x ¼ 0) at time step t ¼ 0:27 s and at the flame front at t ¼ 0:28 and
0:29 s. Accuracy cannot be increased by using larger number of grid points because instability
occurs once node number n is greater than 24. This is shown in Fig. 9(b), where 25 nodes were
used and the solution became divergent as early as at time step t ¼ 0:027 s.

This example shows that we can do little to improve the accuracy even if we use non-uniformly
spaced grid points.

4.3. Two-dimensional scalar combustion model

The two-dimensional scalar reaction model is described by the following equation:

@uðx; y; tÞ
@t

¼
@2uðx; y; tÞ

@x2
þ
@2uðx; y; tÞ

@y2
þ D½1þ a � uðx; y; tÞ
expð�d=uÞ;

� 1pxp1; � 1pyp1 t > 0 ð18aÞ

subject to the following boundary and initial conditions:

uð�1; y; tÞ ¼ uð1; y; tÞ ¼ 1; uðx; 1; tÞ ¼ 1; t > 0 ð18bÞ

uðx; y; 0Þ ¼ 1; �1pxp1; �1pyp1: ð18cÞ

The values used in the computation are a ¼ 1; d ¼ 20 and R ¼ 5: It is straightforward to
generalize Eq. (15) to two-dimensional cases. Suppose the two-dimensional solution domain
ðapxpb; cpxpdÞ are discretized by Nx � Ny regular nodes. Applying Eq. (15) to x and y,
respectively, will yield partial derivatives in both directions. We solved Eq. (17) for Nx ¼ Ny ¼ 29;
M ¼ 9 and Mp ¼ 2: The computed temperatures versus (x; y) are shown in Fig. 10 for several time
steps. We see a sharp jump of temperature from t ¼ 0:28 to 0:29 s that is similar to one-
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Fig. 8. Temperature vs position x at t ¼ 0; 0.25, 0.26,0.27,0.28 and 0.29 for example 2, Eq. (17). Solid lines denote the

results from present method while circles are results obtained from higher-order finite difference method [18].
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dimensional case. A sharp flame front is formed at t ¼ 0:3 s. The final state is shown in Fig. 10(e).
The temperature in the whole domain is uniform, equal to 1 þ a: In this example, we deliberately
used Nx ¼ Ny ¼ 29 just for the sake of testing the flexibility of the code.

4.4. Forced vibration of a simply supported plate

In all the examples previously considered, the order of partial differential equations was not
higher than two. In this example, a higher order (fourth order) partial differential equation is
considered to show the applicability of the current approach. Consider the forced transverse
vibration of a square thin plate. The governing equation is

@2W

@t2
þ

D

m
r2r2W ðx; y; tÞ ¼

f ðx; y; tÞ
m

¼ gðtÞsinð2pxÞsinðpyÞ; ð19aÞ
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Fig. 9. The scalar combustion model solved using general DQ with non-equally spaced grid points. The node number

used are (a) n ¼ 24 and (b) n ¼ 25: Insufficient accuracy in the first case (a) and instability in the second case (b) are

observable.

Z. Zong / Journal of Sound and Vibration 266 (2003) 307–323 319



where W ðx; y; tÞ is vertical displacement, D is stiffness and m is mass per unit area. If the plate is
simply supported on the four sides, the boundary conditions are

q2W

@x2
¼ W ¼ 0 at x ¼ 0 and x ¼ 1; ð19bÞ

@2W

@y2
¼ W ¼ 0 at y ¼ 0 and y ¼ 1: ð19cÞ

This problem can be analytically solved using Laplace transform. The analytical solution is, in
the form of convolution integral, given by

W ðx; y; tÞ ¼ AðtÞ sinð2pxÞ sinðpyÞ; ð20aÞ

AðtÞ ¼
Z t

0

gðtÞ cosbðt � tÞ dt: ð20bÞ
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Fig. 10. Temperature vs (x,y) at several time steps for two-dimensional reaction model.
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Suppose gðtÞ is a sinusoidal function of time, that is, gðtÞ ¼ G sinðotÞ: We obtain from Eq. (20b)

AðtÞ ¼ �
Go sin bt

bðb2 � o2Þ
þ

G sinot

b2 � o2
: ð21Þ

Direct solution of Eq. (19) using current approach is shown in Fig. 11. The parameters used in
the computation are: D=m ¼ 10�2; G ¼ 10 and o ¼ 15: The node number is Nx ¼ Ny ¼ 20; and
M ¼ 7; Mp ¼ 0:

Fig. 11(a) shows the displacement field at time t ¼ 0:26 s obtained from current approach. The
analytical results at the same time step are shown in Fig. 11(b). A careful comparison shows that
both are in very good agreement. Fig. 11(c) shows the comparison of time–history at the point
(0.25, 0.25). The solid line denotes numerical result and the dots denote analytical solution. They
are coincident.

5. Discussions

In this section, several potentially controversial issues are discussed.
There exists an optimum grid distribution when DQ is applied, which is often characterized by

non-uniformity as given by Eq. (13). Instead of using a uniform grid distribution in the string
vibration problem, see Eq. (7), will a non-uniform distribution like Eq. (13) give rise to dynamic
numerical instability, too? The answer is yes. Non-uniform distribution can increase accuracy, but
cannot avoid or remove dynamic numerical instability completely if the grid number N is large.
DQ is equivalent to differentiation using Lagrange interpolation. In the theoretical framework of
Lagrange interpolation, it can be shown that the divergence near the end of the interval will
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Fig. 11. Results obtained from (a) present method and (b) analytical solution at time step t ¼ 0:26 s. (c) Comparison of

time history of displacement obtained from present method and analytical solution.
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actually grow exponentially as the number of points is increased [17]. Thus, the easiest way is to
use a small number of nodes to approximate the derivatives at cortical nodes to prevent the
exponential growth.

Classification of core and cortical nodes is crucial in applying the variable order approach
presented here. There is a lack, however, of a strict procedure to determine the values for M and
Mp: It is difficult to provide theoretical values for them but the rule of thumb given in the previous
section (that is, M ¼ 6215 and MP ¼ 025 ) will suffice practical applications. Mp plays the role
of smooth transition from a cortical node to a core node. Mp ¼ 0 means a hard transition while a
larger Mp means a soft transition. Mp needs not be too large. So the suitable range for it is
Mp ¼ 025:

One word should be mentioned on how to implement boundary conditions. In the examples
treated in this paper, the boundary conditions are of same type, that is, the function under
consideration takes on a fixed value on boundaries. This is easy to be implemented. At each time
step in using Runge–Kutta scheme, the function values on boundaries are set to the given values.
For general cases, however, more efforts are needed to implement boundary conditions. Many
papers discussed this problem, say Ref. [2], which is thus neglected herein.

6. Conclusions

When DQ is applied, large errors may occur if the grid number is large. The errors
exponentially grow as the grid number increases. Nodes near and on boundaries dominate the
accuracy of DQ method. Dynamic numerical instability is caused by those nodes.

An easy way is introduced in this paper to remove the divergence near boundaries by applying a
small number of points for cortical nodes. The method yields very good results for both linear and
strongly non-linear dynamic problems. It significantly improves the accuracy of conventional DQ
method.
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